The question

Row

The question

What are the drivers of the SARC-CoV-2 spread on Catalonia?

Row

Subserie analyzed

Row

Analysis start date

Date: 2020-02-29

Closing bars

Date: 2020-10-16

Non-pharmateutical intervention days to effect

Days: 29

Real time charts

Charts with information from Catalonia Open Data sources.

Row

Number of cases by age

Row

Rates of detected cases

Evolution of the rates by age.

Row

Rates of detected cases smoth

Evolution of the rates by age smooth by loess

Row

Prevalence

Prevalence analysis, to obtain the percent of detection in each age range.

Row

PCRs

Number of tests done, global and by age.

Row

Percent of Positivity

Row

Evolution of the cases by percent of detection (real cases)

The percent of detection to obtain the real cases are based on the prevalence. We apply if for the different rounbds, being the Round I to III almost the same

Row

Rates of real cases

The percent of detection to obtain the real cases are based on the prevalence. We apply if for the different rounbds, being the Round I to III almost the same

Row

Rates of real cases smoth

Evolution of the rates of real cases by age smooth by loess

Granger Tests

The Granger causality test is a statistical hypothesis test for determining whether one time series is useful in forecasting another. See https://en.wikipedia.org/wiki/Granger_causality

Row

Phillips-Ouliaris Cointegration Test


    Phillips-Ouliaris Cointegration Test

data:  bfx
Phillips-Ouliaris demeaned = -113.83, Truncation lag parameter = 2,
p-value = 0.01

    Phillips-Ouliaris Cointegration Test

data:  bfx
Phillips-Ouliaris demeaned = -40.074, Truncation lag parameter = 2,
p-value = 0.01

Row

Detected cases

Lag gr49by19 gr49by09 gr39by19 gr39by09 gr19by49 gr09by49 gr19by39 gr09by39
Lag 1 0.211 0.802 0.427 0.461 0.112 0.018 0.074 0.002
Lag 2 0.594 0.443 0.690 0.424 0.440 0.060 0.246 0.009
Lag 3 0.000 0.000 0.000 0.000 0.101 0.089 0.193 0.004
Lag 4 0.000 0.000 0.000 0.000 0.120 0.094 0.191 0.011
Lag 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Lag 6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Lag 7 0.000 0.000 0.000 0.000 0.001 0.003 0.000 0.000
Lag 8 0.000 0.005 0.002 0.055 0.254 0.031 0.073 0.000
Lag 9 0.000 0.004 0.011 0.015 0.076 0.006 0.025 0.000
Lag 10 0.000 0.007 0.016 0.016 0.080 0.011 0.040 0.000

Real cases

Lag gr49by19 gr49by09 gr39by19 gr39by09 gr19by49 gr09by49 gr19by39 gr09by39
Lag 1 0.018 0.096 0.077 0.026 0.390 0.026 0.174 0.023
Lag 2 0.057 0.044 0.107 0.037 0.039 0.000 0.013 0.001
Lag 3 0.152 0.053 0.081 0.104 0.075 0.001 0.006 0.001
Lag 4 0.313 0.111 0.096 0.146 0.155 0.004 0.024 0.004
Lag 5 0.134 0.150 0.012 0.220 0.139 0.005 0.009 0.005
Lag 6 0.095 0.019 0.023 0.156 0.124 0.008 0.000 0.009
Lag 7 0.003 0.042 0.005 0.055 0.072 0.048 0.002 0.021
Lag 8 0.110 0.077 0.276 0.030 0.000 0.002 0.000 0.000
Lag 9 0.013 0.103 0.063 0.044 0.001 0.000 0.000 0.000
Lag 10 0.011 0.090 0.069 0.041 0.003 0.000 0.000 0.000

Real cases (taxes)

Notice that no modification due to the use of the taxes (modifying both series the same), we add this just for validation purposes.

Lag gr49by19 gr49by09 gr39by19 gr39by09 gr19by49 gr09by49 gr19by39 gr09by39
Lag 1 0.018 0.096 0.077 0.026 0.390 0.026 0.174 0.023
Lag 2 0.057 0.044 0.107 0.037 0.039 0.000 0.013 0.001
Lag 3 0.152 0.053 0.081 0.104 0.075 0.001 0.006 0.001
Lag 4 0.313 0.111 0.096 0.146 0.155 0.004 0.024 0.004
Lag 5 0.134 0.150 0.012 0.220 0.139 0.005 0.009 0.005
Lag 6 0.095 0.019 0.023 0.156 0.124 0.008 0.000 0.009
Lag 7 0.003 0.042 0.005 0.055 0.072 0.048 0.002 0.021
Lag 8 0.110 0.077 0.276 0.030 0.000 0.002 0.000 0.000
Lag 9 0.013 0.103 0.063 0.044 0.001 0.000 0.000 0.000
Lag 10 0.011 0.090 0.069 0.041 0.003 0.000 0.000 0.000

Chow test

Row

Description

The Chow test, proposed by econometrician Gregory Chow in 1960, is a test of whether the true coefficients in two linear regressions on different data sets are equal. In econometrics, it is most commonly used in time series analysis to test for the presence of a structural break at a period which can be assumed to be known a priori (for instance, a major historical event such as a war). In program evaluation, the Chow test is often used to determine whether the independent variables have different impacts on different subgroups of the population. Source: https://en.wikipedia.org/wiki/Chow_test

Catalonia

We plot all the p.values for the Chow test to find the periods where the trends between the 10-19 serie and the 40-49 serie differs, when the p.value is over the critical value of 0.05 implies that the series moves along.

Opening schools day

Day: 198 -> 4.02184409626916e-05

Data

Row

Data

The dataset needed to do this analysis. Accesed thorugt Open Data.

Data: Date casosPositiusData: All new cases detected PCRsData: All tests done Sub9 to Sub90: All new cases by age PCRsSub9 to PCRsAvisData: All PCRs by age casosSub15 to casosAvis: All new cases by other range age totalPond: All real cases (prevalence) Sub09Pond to Sub90Pond: Real cases by age (prevalence) Taxa: All cases rate taxaSub09 to taxaSub90 : Rates by age taxaPond: All real cases rate (prevalence) taxaSub09 to taxaSub90Pond: All real cases rate by age (prevalence) percPos percPosSub15 to percPosSub00: Percent of positivity by age